18 research outputs found

    Oncogenic BRAF mutation induces DNA methylation changes in a murine model for human serrated colorectal neoplasia

    Get PDF
    Colorectal cancer is a major cause of cancer death and approximately 20% arises within serrated polyps, which are under-recognized and poorly understood. Human serrated colorectal polyps frequently exhibit both oncogenic BRAF mutation and widespread DNA methylation changes, which are important in silencing genes restraining neoplastic progression. Here, we investigated whether in vivo induction of mutant Braf is sufficient to result in coordinated promoter methylation changes for multiple cancer-related genes. The BrafV637E mutation was induced in murine intestine on an FVB;C57BL/6J background and assessed for morphological and DNA methylation changes at multiple time points from 10 days to 14 months. Extensive intestinal hyperplasia developed by 10 days post-induction of the mutation. By 8 months, most mice had murine serrated adenomas with dysplasia and invasive cancer developed in 40% of mice by 14 months. From 5 months onwards, Braf mutant mice showed extensive, gene-specific increases in DNA methylation even in hyperplastic mucosa without lesions. This demonstrates that persistent oncogenic Braf signaling is sufficient to induce widespread DNA methylation changes. This occurs over an extended period of time, mimicking the long latency followed by rapid progression of human serrated neoplasia. This study establishes for the first time that DNA methylation arises slowly in direct response to prolonged oncogenic Braf signaling in serrated polyps; this finding has implications both for chemoprevention and for understanding the origin of DNA hypermethylation in cancer generally.Catherine E. Bond, Cheng Liu, Futoshi Kawamata, Diane M. McKeone, Winnie Fernando, Saara Jamieson, Sally-Ann Pearson, Alexandra Kane, Susan L. Woods, Tamsin R.M. Lannagan, Roshini Somashekar, Young Lee, Troy Dumenil, Gunter Hartel, Kevin J. Spring, Jennifer Borowsky, Lochlan Fennell, Mark Bettington, Jason Lee, Daniel L. Worthley, Barbara A. Leggett and Vicki L.J. Whitehal

    Copy number profiles of paired primary and metastatic colorectal cancers

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Liver metastasis is the major cause of death following a diagnosis of colorectal cancer (CRC). In this study, we compared the copy number profiles of paired primary and liver metastatic CRC to better understand how the genomic structure of primary CRC differs from the metastasis. Paired primary and metastatic tumors from 16 patients and their adjacent normal tissue samples were analyzed using single nucleotide polymorphism arrays. Genome-wide chromosomal copy number alterations were assessed, with particular attention to 188 genes known to be somatically altered in CRC and 24 genes that are clinically actionable in CRC. These data were analyzed with respect to the timing of primary and metastatic tissue resection and with exposure to chemotherapy. The genomic differences between the tumor and paired metastases revealed an average copy number discordance of 22.0%. The pairs of tumor samples collected prior to treatment revealed significantly higher copy number differences compared to post-therapy liver metastases (P = 0.014). Loss of heterozygosity acquired in liver metastases was significantly higher in previously treated liver metastasis samples compared to treatment naive liver metastasis samples (P = 0.003). Amplification of the clinically actionable genes ERBB2, FGFR1, PIK3CA or CDK8 was observed in the metastatic tissue of 4 patients but not in the paired primary CRC. These examples highlight the intra-patient genomic discrepancies that can occur between metastases and the primary tumors from which they arose. We propose that precision medicine strategies may therefore identify different actionable targets in metastatic tissue, compared to primary tumors, due to substantial genomic differences

    DNA methylation changes that precede onset of dysplasia in advanced sessile serrated adenomas

    No full text
    Sessile serrated adenomas (SSAs) are common polyps which give rise to 20-30% of colorectal cancer (CRC). SSAs display clinicopathologic features which present challenges in surveillance, including overrepresentation in young patients, proclivity for the proximal colon and rarity of histologic dysplasia (referred to then as SSAs with dysplasia, SSADs). Once dysplasia develops, there is rapid progression to CRC, even at a small size. There is therefore a clinical need to separate the "advanced" SSAs at high risk of progression to SSAD and cancer from ordinary SSAs. Since SSAs are known to accumulate methylation over time prior to the development of dysplasia, SSAD backgrounds (the remnant SSA present within an SSAD) likely harbour additional methylation events compared with ordinary SSAs. We therefore performed MethyLight and comprehensive methylation array (Illumina MethylationEPIC) on 40 SSAD backgrounds and 40 matched ordinary SSAs, and compared the methylation results with CRC methylation, CRC expression and immunohistochemical data.SSAD backgrounds demonstrated significant hypermethylation of CpG islands compared with ordinary SSAs, and the proportion of hypermethylated probes decreased progressively in the shore, shelf and open sea regions. Hypomethylation occurred in concert with hypermethylation, which showed a reverse pattern, increasing progressively away from the island regions. These methylation changes were also identified in BRAF-mutant hypermethylated CRCs. When compared with CRC expression data, SV2B, MLH1/EPM2AIP1, C16orf62, RCOR3, BAIAP3, OGDHL, HDHD3 and ATP1B2 demonstrated both promoter hypermethylation and decreased expression. Although SSAD backgrounds were histologically indistinguishable from ordinary SSAs, MLH1 methylation was detectable via MethyLight in 62.9% of SSAD backgrounds, and focal immunohistochemical MLH1 loss was seen in 52.5% of SSAD backgrounds.Significant hyper- and hypomethylation events occur during SSA progression well before the development of histologically identifiable changes. Methylation is a heterogeneous process within individual SSAs, as typified by MLH1, where both MLH1 methylation and focal immunohistochemical MLH1 loss can be seen in the absence of dysplasia. This heterogeneity is likely a generalised phenomenon and should be taken into account in future methylation-based studies and the development of clinical methylation panels

    Aspirin reduces the incidence of metastasis in a pre-clinical study of Braf mutant serrated colorectal neoplasia

    No full text
    Background: Aspirin reduces the incidence of conventional adenomas driven by APC mutation and thus colorectal cancer. The effect of aspirin on the ~20% of colorectal cancers arising via BRAF mutation is yet to be established. Methods: BrafV637E/+;Villin-CreERT2/+ mice were allocated to a control (n = 86) or aspirin-supplemented (n = 83) diet. After 14 months the incidence of murine serrated lesions, carcinoma and distant metastases were measured by histological examination. RNA was extracted from carcinomas from each cohort and subjected to sequencing to identify differentially expressed genes and molecular pathways. Results: Aspirin did not reduce the incidence of murine serrated lesions or carcinoma when compared to control, however, did significantly reduce lesion size (P = 0.0042). Among the mice with carcinoma there was a significant reduction in the incidence of distant metastasis with aspirin treatment (RR 0.69, 95% CI 0.48–0.90, P = 0.0134). Key pathways underlying metastasis of carcinoma cells include NOTCH, FGFR and PI3K signalling, were significantly downregulated in carcinomas sampled from mice on an aspirin-supplemented diet. Conclusions: Aspirin reduces the incidence of metastatic Braf mutant carcinoma, although this is not due to a reduction in primary disease. The reduction in metastasis could be attributed to a delay or prevention of molecular changes within the primary site driving metastatic growth.</p

    The role of APC in WNT pathway activation in serrated neoplasia

    No full text
    Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown. We examined aberrant nuclear β-catenin immunolocalization as a surrogate for WNT pathway activation and analyzed the entire APC gene coding sequence in serrated and conventional pathway polyps and cancers. WNT pathway activation was a common event in conventional pathway lesions with aberrant nuclear immunolocalization of β-catenin and truncating APC mutations in 90% and 89% of conventional adenomas and 82% and 70% of BRAF wild-type cancers, respectively. WNT pathway activation was seen to a lesser extent in serrated pathway lesions. It occurred at the transition to dysplasia in serrated polyps with a significant increase in nuclear β-catenin labeling from sessile serrated adenomas (10%) to sessile serrated adenomas with dysplasia (55%) and traditional serrated adenomas (9%) to traditional serrated adenomas with dysplasia (39%) (P=0.0001). However, unlike the conventional pathway, truncating APC mutations were rare in the serrated pathway lesions especially sessile serrated adenomas even when dysplastic (15%) and in the BRAF mutant cancers with microsatellite instability that arise from them (8%). In contrast, APC missense mutations that were rare in conventional pathway adenomas and cancers (3% in BRAF wild-type cancers) were more frequent in BRAF mutant cancers with microsatellite instability (32%). We conclude that increased WNT signaling is important in the transition to malignancy in the serrated pathway but that APC mutation is less common and the spectrum of mutations is different than in conventional colorectal carcinogenesis. Moderate impact APC mutations and non-APC-related causes of increased WNT signaling may have a more important role in serrated neoplasia than the truncating APC mutations common in conventional adenomas.Modern Pathology advance online publication, 17 November 2017; doi:10.1038/modpathol.2017.150

    MLH1-93\ua0G/a polymorphism is associated with MLH1 promoter methylation and protein loss in dysplastic sessile serrated adenomas with BRAFV600E mutation

    No full text
    Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis. The reason for this dichotomy is unknown. In this study, we assessed the genotypic frequency of the MLH1-93 polymorphism rs1800734 in SSADs and TSAs to determine if the uncommon variant A allele predisposes to MLH1 promoter hypermethylation.We performed genotyping for the MLH1-93 polymorphism, quantitative methylation specific PCR, and MLH1 immunohistochemistry on 124 SSAD, 128 TSA, 203 BRAF mutant CRCs and 147 control subjects with normal colonoscopy.The minor A allele was significantly associated with a dose dependent increase in methylation at the MLH1 promoter in SSADs (p\ua0= 0.022). The AA genotype was only observed in SSADs with MLH1 loss. The A allele was also overrepresented in BRAF mutant cancers with MLH1 loss. Only one of the TSAs showed loss of MLH1 and the overall genotype distribution in TSAs did not differ from controls.The MLH1-93 AA genotype is significantly associated with promoter hypermethylation and MLH1 loss in the context of SSADs. BRAF mutant microsatellite stable colorectal cancers with the AA genotype most likely arise in TSAs since the A allele does not predispose to methylation in this context

    Alterations in signaling pathways that accompany spontaneous transition to malignancy in a mouse model of BRAF mutant microsatellite stable colorectal cancer

    No full text
    The serrated neoplasia pathway gives rise to a distinct subgroup of colorectal cancers distinguished by the presence of mutant BRAF and the CpG Island Methylator Phenotype (CIMP). BRAF mutant CRC are commonly associated with microsatellite instability, which have an excellent clinical outcome. However, a proportion of BRAF mutant CRC retain microsatellite stability and have a dismal prognosis. The molecular drivers responsible for the development of this cancer subgroup are unknown. To address this, we established a murine model of BRAF mutant microsatellite stable CRC and comprehensively investigated the exome and transcriptome to identify molecular alterations in signaling pathways that drive malignancy. Exome sequencing of murine serrated lesions (mSL) and carcinomas identified frequent hot spot mutations within the gene encoding β-catenin (Ctnnb1). Immunohistochemical staining of β-catenin indicated that these mutations led to an increase in the presence of aberrant nuclear β-catenin that resulted in gene expression changes in targets of β-catenin transcription. Gene expression profiling identified a significant enrichment for transforming growth factor-β (TGF-β) signaling that was present in mSL and carcinomas. Early activation of TGF-β suggests that this pathway may be an early cue directing mSL to microsatellite stable carcinoma. These findings in the mouse model support the importance of alterations in WNT and TGF-β signaling during the transition of human sessile serrated lesions to malignancy

    APC mutation marks an aggressive subtype of BRAF mutant colorectal cancers

    No full text
    WNT activation is a hallmark of colorectal cancer. mutation is present in 15% of colorectal cancers, and the role of mutations in WNT signaling regulators in this context is unclear. Here, we evaluate the mutational landscape of WNT signaling regulators in mutant cancers.we performed exome-sequencing on 24 BRAF mutant colorectal cancers and analyzed these data in combination with 175 publicly available BRAF mutant colorectal cancer exomes. We assessed the somatic mutational landscape of WNT signaling regulators, and performed hotspot and driver mutation analyses to identify potential drivers of WNT signaling. The effects of Apc and Braf mutation were modelled, in vivo, using the Apc and Braf/Villin-Cre mouse, respectively.RNF43 was the most frequently mutated WNT signaling regulator (41%). Mutations in the beta-catenin destruction complex occurred in 48% of cancers. Hotspot analyses identified potential cancer driver genes in the WNT signaling cascade, including MEN1, GNG12 and WNT16. Truncating APC mutation was identified in 20.8% of cancers. Truncating APC mutation was associated with early age at diagnosis (p < 2 × 10), advanced stage (p < 0.01), and poor survival (p = 0.026). Apc/Braf animals had more numerous and larger SI and colonic lesions (p < 0.0001 and p < 0.05, respectively), and a markedly reduced survival (median survival: 3.2 months, p = 8.8 × 10), compared to animals with Apc or Braf mutation alone.the WNT signaling axis is frequently mutated in BRAF mutant colorectal cancers. WNT16 and MEN1 may be novel drivers of aberrant WNT signaling in colorectal cancer. Co-mutation of BRAF and APC generates an extremely aggressive neoplastic phenotype that is associated with poor patient outcome

    RNF43 is mutated less frequently in Lynch Syndrome compared with sporadic microsatellite unstable colorectal cancers

    No full text
    The WNT signaling pathway is commonly altered during colorectal cancer development. The E3 ubiquitin ligase, RNF43, negatively regulates the WNT signal through increased ubiquitination and subsequent degradation of the Frizzled receptor. RNF43 has recently been reported to harbor frequent truncating frameshift mutations in sporadic microsatellite unstable (MSI) colorectal cancers. This study assesses the relative frequency of RNF43 mutations in hereditary colorectal cancers arising in the setting of Lynch syndrome. The entire coding region of RNF43 was Sanger sequenced in 24 colorectal cancers from 23 patients who either (i) carried a germline mutation in one of the DNA mismatch repair genes (MLH1, MSH6, MSH2, PMS2), or (ii) showed immunohistochemical loss of expression of one or more of the DNA mismatch repair proteins, was BRAF wild type at V600E, were under 60 years of age at diagnosis, and demonstrated no promoter region methylation for MLH1 in tumor DNA. A validation cohort of 44 colorectal cancers from mismatch repair germline mutation carriers from the Australasian Colorectal Cancer Family Registry (ACCFR) were sequenced for the most common truncating mutation hotspots (X117 and X659). RNF43 mutations were found in 9 of 24 (37.5%) Lynch syndrome colorectal cancers. The majority of mutations were frameshift deletions in the G659 G7 repeat tract (29%); 2 cancers (2/24, 8%) from the one patient harbored frameshift mutations at codon R117 (C6 repeat tract) within exon 3. In the ACCFR validation cohort, RNF43 hotspot mutations were identified in 19/44 (43.2%) of samples, which was not significantly different to the initial series. The proportion of mutant RNF43 in Lynch syndrome related colorectal cancers is significantly lower than the previously reported mutation rate found in sporadic MSI colorectal cancers. These findings identify further genetic differences between sporadic and hereditary colorectal cancers. This may be because Lynch Syndrome cancers commonly arise in colorectal adenomas already bearing the APC mutation, whereas sporadic microsatellite unstable colorectal cancers arise from serrated polyps typically lacking APC mutation, decreasing the selection pressure on other WNT signaling related loci in Lynch syndrome

    Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas

    No full text
    BACKGROUND & AIMS: Colorectal cancer is an epigenetically heterogeneous disease, however, the extent and spectrum of the CpG island methylator phenotype (CIMP) is not clear. METHODS: Genome-scale methylation and transcript expression were measured by DNA Methylation and RNA expression microarray in 216 unselected colorectal cancers, and findings were validated using The Cancer Genome Atlas 450K and RNA sequencing data. Mutations in epigenetic regulators were assessed using CIMP-subtyped Cancer Genome Atlas exomes. RESULTS: CIMP-high cancers dichotomized into CIMP-H1 and CIMP-H2 based on methylation profile. KRAS mutation was associated significantly with CIMP-H2 cancers, but not CIMP-H1 cancers. Congruent with increasing methylation, there was a stepwise increase in patient age from 62 years in the CIMP-negative subgroup to 75 years in the CIMP-H1 subgroup (P < .0001). CIMP-H1 predominantly comprised consensus molecular subtype 1 cancers (70%) whereas consensus molecular subtype 3 was over-represented in the CIMP-H2 subgroup (55%). Polycomb Repressive Complex-2 (PRC2)-marked loci were subjected to significant gene body methylation in CIMP cancers (P < 1.6 × 10-78). We identified oncogenes susceptible to gene body methylation and Wnt pathway antagonists resistant to gene body methylation. CIMP cluster-specific mutations were observed in chromatin remodeling genes, such as in the SWItch/Sucrose Non-Fermentable and Chromodomain Helicase DNA-Binding gene families. CONCLUSIONS: There are 5 clinically and molecularly distinct subgroups of colorectal cancer. We show a striking association between CIMP and age, sex, and tumor location, and identify a role for gene body methylation in the progression of serrated neoplasia. These data support our recent findings that CIMP is uncommon in young patients and that BRAF mutant polyps in young patients may have limited potential for malignant progression.status: publishe
    corecore